
system operation
PROGRAMMER'S CONSOLE OPERATION
The switches and indicators on the PDP-8/E programmer's console are
designed to allow manual control over the detailed operation of the com-
puter and present a convenient indication of program conditions within
the machine. The PDP-8/E may be programmed manually, by means of
switches on the programmer's console, and program execution may be
started, stopped, monitored, or toggled between various modes of oper-
ation. The console switches also provide a convenient means of selecting
a memory location for examination and selectively modifying the content
of memory.

The indicator lights on the programmer's console provide a continuous
display of the logical state of major registers, busses and control flip-
flops inside the PDP-8/E, as well as several important registers contained
in commonly used processor options, such as the extended arithmetic
element. Figure 3-1 shows the KC8-EA programmer?^ Console, which is
typical of the models available. Table 3-1 describes the function of the
various switches and indicators. This table is intended as a reference for
the advanced programmer or system operator; most users wilf want to
be thoroughlyfamiliar with the remainder of this chapter before attempt-
ing to operate the programmer's console.

SWITCH I T C U S T U

Figure 3-1. PDP-8/E Programmer's Console

Table 3-1 Programmer's Console Control and Indicator Functions

CONTROL OR
INDICATOR

OFF/ POWER/ In the counter-clockwise, or OFF position, this
PANEL LOCK key operated switch disconnects all primary

power to the computer. In the POWER, or verti-
cal position, it applies power to the computer
and all manual controls. In the PANEL LOCK, or
clockwise position, it applies power to the com-
puter, the switch register, the SW switch and the
RUN indicator only. In this position, a running
program is protected from inadvertent switch op-
eration.

When the SW switch is up, the OMNIBUS SW
line is disabled (logical 1, or voltage level high).
When it is down, the SW line is asserted. This
switch is used by certain peripheral options such
as the M18-E Bootstrap Loader.

ADDR
LOAD

EXTD
ADDR
LOAD

CLEAR

- EXAM

Pressing the ADDRess LOAD switch loads the
contents of the SR into the CPMA register and
enables the FETCH major state for the next pro-
cessor cycle (which will begin when the RUN
indicator is lit).

Pressing the EXTendeD ADDRess LOAD switch
loads the content of SR bits 6-8 into the instruc-
tion field register and the content of SR bits
9-11 into the data field register. The instruction
and data field registers are contained in the
KM8-E Memory Extension and Time Share option.

Pressing the CLEAR switch generates an INI-
TIALIZE pulse that loads a binary 0 into bits
0-11 of the AC, the link, all I10 device flag reg-
isters and all interrupt system flip-flops. This is
equivalent to executing a CAF instruction.

Pressing the CONTinue switch sets the RUN
flip-flop and issues a MEM START L signal to
begin program execution at the memory location
addressed by the current content of the CPMA
register.

Pressing the EXAMine switch loads the contents
of the memory location addressed by the current
content of the CPMA register into the MB reg-
ister and then increments the CPMA and PC
registers. Repeated operation of this switch per-
mits the content of sequential memory locations
to be examined.

HALT

SING
STEP

DEP

EMA

MEMORY ADDRESS

RUN

Indicator Selector
Switch

BUS

Pressing the HALT switch clears the RUN flip-
flop, causing the computer to stop at the begin-
ning of the next FETCH cycle. Operating the
computer with the HALT switch depressed causes
one complete instruction to be executed when-
ever the CONTinue switch is pressed.

Pressing SINGIe STEP clears the RUN flip-flop
and causes the computer to stop at TS1 of the
next machine cycle. Operating the computer with
the SINGIe STEP switch depressed causes one
machine cycle to be executed whenever the
CONTinue switch is pressed.

Lifting the spring-loaded DEPosit switch loads
the content of the SR into the MB register and
into memory at the address specified by the cur-
rent content of the CPMA register, then incre-
ments the CPMA and PC registers. Use of the
DEPosit switch facilitates manual storage of in-
formation in sequential memory locations.

The Extended Memory Address register displays
the content of the 3-bit EMA bus (EMAO-2) con-
tained on the OMNIBUS. EMAO-2 normally car-
ries the memory field designation of the memory
field being accessed.

The MEMORY ADDRESS register displays the
content of the 12-bit MA bus (MAO-11) contained
on the OMNIBUS. It combines with the EMA
register to provide the 15-bit address of the next
memory location to be accessed.

The RUN indicator lamp is lighted to show that
the RUN flip-flop is set, and all machine circuits
are activated and capable of executing instruc-
tions.

This 6-position rotary switch designates which of
six possible registers (or combinations of reg-
isters) is to be gated into the adjacent 12-bit
display. Setting the Indicator Selector Switch to:

Displays the logical state of the 12-bit DATA bus
(DATAO-11) contained on the OMNIBUS.

Displays the content of the Multiplier Quotient
register.

Displays the logical state of the 12-bit MEMORY
DATA bus (MDO-11) contained on the OMNIBUS.
This bus normally carries the content of the last
memory location addressed by the EMA and
MEMORY ADDRESS registers.

AC Displays the content of the accumulator.

STATUS Each display lamp is lighted to indicate the des-
ignated condition:

INDICATOR
LAMP/ BIT
POSITION

TURNED ON TO INDICATE:

The link is set.

The Greater Than Flag (GTF) is set. The GTF is
contained in the KE8-E Extended Arithmetic
Element.

2 The OMNIBUS interrupt request line is asserted.

3 The interrupt inhibit flip-flop is set. The interrupt
inhibit flip-flop is contained in the KM8-E Mem-
ory Extension and Time Share option.

4 The interrupt system is enabled.

The USER MODE line is asserted. Signal USER
MODE L originates in the time share portion of
the KM8-E Memory Extension and Time Share
option to disable execution of all OSR, LAS, IOT
and HLT instructions when the computer is op-
erated in a timesharing environment.

Displays the content of the 3-bit instruction field
register (IFO-2) contained in the KM8-E Memory
Extension and Time Share option. .

Displays the content of the 3-bit data field reg-
ister (DFO-2) contained in the KM8-E Memory
Extension and Time Share option.

STATE Each display lamp is lighted to indicate the des-
ignated condition:

INDICATOR
LAMPI BIT TURNED ON TO INDICATE:
POSITION

FETCH major state is enabled.

DEFER major state is enabled.

2 ' EXECUTE major state is enabled.

Displays the content of the 3-bit instruction reg-
ister (IRO-2).

,
3-4

Displays the state of the MD DIR line on the
OMNIBUS. Signal M D ~ I R is high (and the lamp
is lighted) during operations that read data from
memory. MD DIR is low (and the lamp is ex-
tinguished) during operations that write data
into memory.

Displays the state of the BREAK DATA CONT
line on the OMNIBUS. Signal BREAK DATA CONT
is low (and the lamp is lighted) during an ADM-
operation.

The SW line on the OMNIBUS is asserted. This-
can only occur when the programmer's console
SW switch is depressed.

The PAUSE line on the OMNIBUS is asserted.
Signal I10 PAUSE L is generated during IOT in-
struction execution.

The BREAK IN PROG line on the OMNIBUS is
asserted, indicating that one or more devices are
requesting a data break. The highest priority de-
vice will begin a DMA operation at the beginning
of the following cycle.

The BREAK CYCLE line on the OMNIBUS is as-
serted, indicating that the processor is currently
performing a DMA operation under the control
of a peripheral device.

MEMORY ORGANIZATION
PDP-8lE memory is divided into 4096-word blocks called memory fields.
The memory fields are numbered sequentially from field 0, which is
the first 4096 words of memory supplied with the basic system, up to
field 7, if a full 32K of memory is installed. Within each memory field,
the 4096 storage locations are numbered sequentially, in octal, from
0000 to 7777. This 4-digit octal number is called the 12-bit address of
the memory location. In any given memory field, every storage location
has a unique 12-bit address.

Each memory field is further subdivided into 32 pages of 128 words
each. Memory pages are numbered sequentially, in octal, from page 0
(which contains addresses 0000 to 0177) to page 37 (addresses 7600
to 7777). Within each memory page, the 128 locations on the page are
numbered sequentially, in octal, from 0 to 177. This number is called
the page address Of the memory location. Page addresses are not re-
dundant; the page address of a memory location is simply the octal
value of the low-order 7 bits of the 12-bit address.

The first five bits of a 12-bit memory address are called the page bits.
The octal value of the page bits for any memory address is identical to
the number of the memory page on which the address is located. The
last seven bits of the 12-bit address are called the page address bits.

The octal value of the page address bits for any memory address is
identical to the page address of the memory location. Thus, location
4716 is dt page address 116 on page 23, while location 2257 is at page
address 057 on page 11.

Unlike memory fields, which may be physically separated by being lo-
cated on different modules plugged into the OMNIBUS, memory pages
do not correspond to any physical separation within memory. The com-
puter has no way of recognizing which page of memory it is executing

I PAGE 36 1
1 PAGE 35 I

PAGE I0

PAGE 7

PAGE 6

PAGE 5

PAGE 4

PAGE 3

PAGE 0)
t MEMORY FIELD-
(40e PAGES)

LOC 177

LOC 176

LOC 010

LOC 007

LOG 006

LOC 0 0 5

LOC 004

LOC 003 a
I LOC 002 I

LOC 0 0 1 MI,
1 MEMORY PAGE

(2@Q8 LOCATIONS)

Figure 3-2. PDP-81 E Memory Organization

3-6

0 1 2 3 4 5 6 7 8 9 1 0 1 1

1 MEMORY LOCATION
u

(12 BITS ,USUALLY NUMBERED
DIGIT

3 BITS=1 OCTAL
AS SHOWN)

in, and it is not cognizant of executing across a page boundary. Memory
pages represent a more or less artificial subdivision of memory that
facilitates understanding the PDP-81 E memory reference instruction de-
coding process.

The individual bits of a PDP-8/E memory word are usually numbered,
for reference purposes, as shown in Figure 3-2. The bits of major reg-
isters are numbered in the same manner, but the abbreviated register
name is prefixed to the number for identification purposes. Thus, bit 0
is always the high-order bit of a memory word, while AGO is the high-
order bit of the accumulator and PC11 is the low-order bit of the pro-
gram counter.

MEMORY AND PROCESSOR INSTRUCTIONS
A PDP-8/E insttaction is a single, 12-bit word, stored in memory, that
tells the computer to perform a specific operation or sequence of oper-
ations. Like most stored program computers, the PDP-8/E makes no dis-
tinction between instructions and data; it will manipulate instructions
as though they are stored variables or attempt to execute data as in-
structions if it is programmed to do so. The 12-bit value that tells the
computer to execute a specified instruction is called the octal code for
that instruction. In addition to its unique octal code, every instruction
has an assigned mnemonic, which is a 3- or 4-character name that may
be supplied to an assembler program to generate the corresponding
octal code. There are three general classes of PDP-8/E instructions, each
of which is handled somewhat differently by the central processor.

Memory reference instructions, or MRI1s are instructions that cause the
computer to operate on the content of a memory location, or to use
the content of a memory location to operate on the accumulator. Every
MRI specifies an operation, which is coded in the first 3 bits of the in-
struction, and the address of an operand, which is coded in the last 9
bits. There are five PDP-8/E memory reference instructions. Typical ap-
plications of MRIs include depositing the content of the AC at a specified
address in memory, or jumping to a subroutine with a specified entry
address.

Augmented instructions cause the computer to perform a logical (non-
arithmetic) operation on the content of one of the major registers. Typical
applications of augmented instructions include rotating the AC right or
left, testing the content of the AC or link, loading an I/O device buffer
from the AC and operating the I10 device, or initializing and operating
the interrupt system. Since augmented instructons do not reference a
memory address, all 12 bits of the instruction are available for coding
the precise operation or sequence of operations to be performed.

There is one housekeeping instruction that comprises the third class
of PDP-8/E instructions. This instruction is similar to the MRIs, in that
it references a memory address, but simitar to the augmented instruc-
tions in the manner in which it is executed. It is used to load the PC
with a specified memory address, so that the instruction stored at this
address will be the next instruction to be executed.

ADDRESS MODE BIT
0=DIRECT
1 =INDIRECT

PAGE BIT
0 = PAGE 0
1 =CURRENT PAGE

0 2 3 4 5 11

Figure 3-3. Memory Reference Instruction Format

. r

OP-CODE 0-4
I I

Memory Reference Instructions
Every memory reference instruction contains an operation code, or OP-
code, that occupies the first 3 bits of the instruction and an address
code that occupies the last 9 bits. This format is illustrated in Figure 3-3.
The OP code of an MRI is one of the digits 0 to 4, corresponding to one
of five possible operations. The address code specifies the address of an
operand, if the instruction is directly addressed, or the address of a
pointer to the operand, if the instruction is indirectly addressed.

u I v u v .
RAGE ADDRESS BITS
I : I I I

Bit 3 of an MRI is called the address mode bit. If this bit is set (con-
tains a I), the MRI is indirectly addressed. This means that the address
code of the MRI specifies the page address of a memory location in
which the 12-bit address of the operand is stored. If the address mode
bit is not set, the instruction is directly addressed. In this case, the
address code specifies the page address at which the operand itself is
stored.

I

Bit 4 of an MRI is called the page bit, and bits 5-11 are the page ad-
dress bits. I f the page bit is set, the page address bits contain a page
address in the memory page on which the MRI itself is stored (called the
current page). If the page bit is not set, the page address bits contain a
page address on page 0. In either case, the address specified by the
page bit and the page address bits will be the address of the operand,
if the MRI is directly addressed, or the address of a memory location
that contains the 12-bit address of the operand, if the instruction is in-
directly addressed.

In this manner, an MRI may address any one of 400 (octal) locations
directly, unless it is stored on page zero. If the MRI is stored in one of
the locations 0000-0177, the current page is page zero and the MRI may
only address 200 (octal) locations directly. An MRI may address any of
7777 (octal) locations indirectly, however the pointer to the addressed
location must reside on page 0 or the current page.

Table 3-2 lists the mnemonics for the five memory reference instruc-
tions, their octal codes, and the operations they perform. Only the first
3 bits of the octal codes are listed explicitly; the remaining 9 bits make
up the address code, which depends upon where in memory the operand
for the MRI is stored.

Table 3-2 Memory Reference Instructions

MNEMONIC OCTAL OPERATION

AND

TAD

IS2

DCA

JMS

Logical AND. The content of the memory loca-
tion specified by XXX is combined with the
content of the AC by a bitwise logical AND op-
eration. The result is left in the AC, the operand
is restored to memory, and the original content
of the AC is lost. This instruction, often called
'extract" or "mask", may also be considered
as a bit-by-bit binary multiplication.

Two's Complement Add. The content of the
memory location specified by XXX is combined
with the content of the AC by two's comple-
ment addition. The result is left in the AC, the
operand is restored to memory, and the orig-
inal content of the AC is lost. If there is a high-
order carry from ACO, the link is comple-
mented.

Increment and Skip if Zero. The content of the
memory location specified by XXX is incre- ' .-
mented by 1 and restored to memory. If the
content of the referenced location becomes
zero, the PC is incremented by 1 to skip the
next sequential instruction. If the content of
the referenced location does not become zero,
the next instruction is executed.

Deposit and Clear the Accumulator. The con-
tent of the AC is stored in the memory location
specified by XXX and the AC is set to zero. The
original content of the referenced memory lo-
cation is lost.

Jump to Subroutine. The content of the PC is
stored in the memory location specified by XXX.
The PC is then loaded with 1. more than the
address of this location (XXX+l), so Ahat the
instruction stored in the memory location fol-
lowing the referenced location is the next in-
struction to be executed. The content of the AC
is not affected.

- - - - - - -

The Housekeeping Instruction
The only housekeeping instruction is the JMP instruction, with an OP-
code of 5, whose format is illustrated in Figure 3-4. Table 3-3 lists the
octal code for this instruction and describes the operation it performs.

Figure 3-4. Jump Instruction Format

0 2 - 3 4 5 11

Table 3-3 The Housekeeping Instruction

I 8

1 0 1
I I

MNEMONIC OCTAL OPERATION

I . I . n

PAGE ADDRESS BITS
I I I n

JMP . 5XXX Jump. The 12-bit address of the memory loca-
tion specified by XXX is loaded into the PC, so
that the instruction stored at this address will
be the next'instruction to be executed. The
original content of the PC is lost. The content
of the AC is not affected.

,

ADDRESS MODE BIT
PAGE BIT

AUGMENTED INSTRUCTIONS
The two augmented instructions are the inputloutput transfer instruc-
tion and the operate instruction. Input/output transfer instructions, which
have an OP-code of 6, provide for communication between the central
processor and all peripheral devices. They are also used to communicate
with the interrupt system. Operate instructions, with an OP-code of 7,
are used to perform logical operations on the content of the major reg-
isters.

The Input1 Output Transfer Instruction
Inputloutput transfer (IOT) instructions are used to initiate the opera-
tion of peripheral devices and to transfer data between peripherals and
the central processor. Figure 3-5 shows the format of an IOT instruction.
Bits 0-2 contain the OP-code, which must be 6 to specify an IOT in-
struction. Bits 3-8 contain a device selection code that is transmitted to
every peripheral device whenever the IOT instruction is executed. Device
selectors within the peripheral devices monitor these device codes. When
a peripheral device recognizes a device code as that peripheral's as-
signed code, the device accepts the last three bits of the IOT instruction.

Figure 3-5. IOT Instruction Format

0 2 3 8 9 11
Â

1 1 0
I I I 1 I a 1 I k -

OPERATION
SPECIFICATION

w 1 Â I I

DEVICE SELECTION
v I

Bits 9-11 of an IOT instruction contain the operation specification code.
These bits may be set to specify one of up to eight operations. If a
peripheral device is capable of performing more than eight different op-
erations, it is necessary to assign two or more device codes to the
peripheral device.

The Operate Instruction
The operate instruction consists of 3 groups of microinstructions. Group
1 microinstructions, which are identified by the presence of a 0 in bit
3, are used to perform logical operations on the content of the accumu-
lator and link. Group 2 mi~roinstructions, which are identified by the
presence of a 1 in bit 3 and a 0 in bit 11, are used primarily to test the
content of the accumulator and link, then conditionally skip the next
sequential instruction. Group 3 microinstructions have a 1 in bit 3 and a
1 in bit 11. They are used to perform logical operations on the content
of the accumulator and multiplier quotient registers.

Operate microinstruction from any group may be microprogrammed with
most other operate microinstructions of the same group. The octal code
for a microprogrammed combination of two (or more) microinstructions
is the bitwise logical OR of the octal codes for the individual microin-
structions. When more than one operation is microprogrammed into a
single instruction, the operations are performed in a prescribed sequence,
with logical sequence 1 microinstructions performed first, then logical
sequence 2 microinstructions, and so on. Two operations with the same
logical sequence number are performed simultaneously.

ROTATE AC AND L RIGHT
ROTATE AC AND L LEFT

(BSW IF BITS 8,9 ARE 0)
ROTATE 1 POSITION IF A 0, 2 POSITIONS IF A 1

0 1 2 3 4 5 6 7 8 9 1 0 1 1

LOGICAL SEQUENCE : 1 -CLA , CL L 2 - CMA, CML
3- IAC 4 - RAR, RAL, RTR ,RTL, BSW

1 1 1
I I

Figure 3-6. Group 1 Operate Microinstructions

CLA 0

GROUP 1 MICROINSTRUCTIONS
Figure 3-6 shows the format of a group 1 microinstruction. The OP-
code must be 7, to indicate an operate instruction, and bit 3 must con-
tain a 0, to indicate a group 1 microinstruction. Any one of bits 4 to 11
may be set (loaded with a binary 1) to indicate a specific group 1 micro-
instruction. If more than one of these bits is set, the instruction is a
microprogrammed combination of group 1 microinstructions, which will
be executed according to the logical sequence shown in Figure 3-6.

CLL CMA CML BW IAC

Table 3-4 lists the group 1 microinstructions, their assigned mnemonics
and the operations they perform. Two or more of these microinstructions
may be microprogrammed into a single 12-bit instruction, as long as the .
instruction does not contain more than 1 of the logical sequence 4
microinstructions (RAR, RAL, RTR, RTL and BSW). This restriction should
not impose any constraint on the user, since the five logical sequence 4
microinstructions perform mutually incompatible operations.

Table 3-4 Group 1 Operate Microinstructions

MNEMONIC OCTAL OPERATION

RAL

RTL

PAR

RTR

CML

CM A

CLL 7100

CLA 7200

No Operation. This instruction causes a 1-cycle
delay in program execution, without affecting
the state of the computer. It may be used for
timing synchronization or as a convenient
means of deleting another instruction from a
program.

Increment Accumulator. The content of the ac-
cumulator is incremented by 1.

Byte Swap. The content of the six low-order
bits of the AC is exchanged with the content of
the six high-order bits. That is, AGO is ex-
changed with AC6, AC1 is exchanged with AC7,
etc. The content of the link is not affected.

Rotate Accumulator Left. The content of AC1-11
is shifted into ACO-10. The content of ACO is
shifted into the link, and the content of the
link is shifted into AC11.

Rotate Two Left. Equivalent to two consecutive
RAL operations.

Rotate Accumulator Right. The content of ACO-
10 is shifted into AC1-11. The content of the
link is shifted into ACO, and the content of
AC11 is shifted into the link.

Rotate Two Right Equivalent to two consecu-
tive RAR operations.

Complement Link. The content of the link is
complemented.

Complement Accumulator. The content of each
bit of the AC is complemented. This has the
effect of replacing the content of the AC with
its one's complement.

Clear Link. The link is loaded with a binary 0.

Clear Accumulator. Each bit of the AC is loaded
with a binary 0.

Table 3-5 lists four microprogrammed combinations of group 1 micro-
instructions which are used so frequently that they have been assigned
their own mnemonics. Note that the octal codes for a microprogrammed
combination of operate microinstructions is the bitwise logical OR of the
octal codes of the individual microinstructions. Other frequently used
combinations of operate microinstructions are listed in the appendix of
this handbook.

' Table 3-5 Microprogrammed Combinations of
Group 1 Microinstructions

MNEMONIC OCTAL OPERATION

CIA

STL

STA

GLK

Complement and Increment Accumulator. The
content of the AC is replaced with its two's
complement. This is a microprogrammed com-
bination of CMA and IAC.

Set the Link. The link is loaded with a binary 1.
This is a microprogrammed combination of CLL
and CML.

Set the Accumulator. Each bit of the AC is
loaded with a binary 1. This is a micropro-
gramrned combination of CLA and CMA.

Get the Link. The AC is cleared and the con-
tent of the link is shifted into AC11 while a
0 is shifted into the link. This is a-micropro-
grammed combination of CLA and RAL.

GROUP 2 MICROINSTRUCTIONS
Figure 3-7 shows the format of a group 2 microinstruction. The opera-
tion code must be 7, to indicate an operate instruction, and bit 3 must
contain a 1 while bit 11 must contain a 0, to indicate a group 2 micro-
instruction. Bits 4-10 may be set to indicate a specific group 1 micro-
instruction. if more than one of bits 4-7 or 9-10 is set, the instruction
is a microprogrammed combination of group 2 microinstructions, which
will be executed according to the logical sequence shown in Figure 3-7.
Table 3-6 lists the group 2 microinstructions, their mnenomics, and
the operations they perform.

REVERSE SKIP SENSING OF BITS 5 ,6 ,7 IF SET -3

0 1 2 3 4 5 6 7 $ 9 1 0 1 1

LOGICAL SEQUENCE: 1 (BIT 8 IS 0) - SMA O R SZA O R SNL
(BIT 8 IS 1) -SPA A N D SNA AND SZL

2 - C L A
3 - OSR, HLT

Figure 3-7. Group 2 Operate ~icroinstructions

3-13

0 SNL 1 1 1
I I

S M A OSR SZA 1 HLT CLA

Table 3-6 Group 2 Microinstructions

MNEMONIC OCTAL OPERATION

HLT 7402

OSR 7404

SKP

SNL

SZL

SNA

SMA

Hart. Clears the run flip-flop so that program
execution stops at the end of TP4 of the cur-
rent machine cycle.

Logical OR with Switch Register. The content
of the programmer's console switch register
(SR) is combined with the content of the AC
by a bitwise logical OR operation. The result
is left in the AC and the original content of
the AC is lost. The content of the SR is not
affected.

Skip. The content of the PC is incremented by
1, to skip the next sequential instruction.

Skip on Non-Zero Link. The content of the
link is sampled. If the link contains a 1, the
content of the PC is incrernented to skip the
next sequential instruction. If the link contains
a 0, the next instruction is executed.

Skip on Zero Link. The content of the link is
sampled. If the link contains a 0, the content
of the PC is incremented to skip the next
sequential instruction. If the link contains a
1, the next instruction is executed.

Skip on Zero Accumulator. The content of each
bit of the AC is sampled. If every bit contains
a 0, the content of the PC is incremented to
skip the next sequential instruction. If any bit
contains a 1, the next instruction is executed.

Skip on Non-Zero Accumulator. The content of
each bit of the AC is sampled. If any bit con-
tains a 1, the content of the PC is incremented
by 1 "to skip the next sequential instruction.
If every bit contains a 0, the next instruction
is executed.

Skip on Minus Accumulator. The content of
ACO is sampled. If ACO contains a 1, indicat-
ing that the AC contains a negative two's
complement number, the content of the PC
is incremented to skip the next sequential
instruction. If ACO contains a 0, the next in-
struction is executed.

Table 3-6 Group 2 Microinstructions (Cont.)
--

MNEMONIC OCTAL OPERATION

SPA 7510 Skip on Positive ~ccumulator. The content of
ACO is sampled. If ACO contains a 0, indicat-
ing that the AC contains a positive two's com-
plement number (or zero), the content of the
PC is incremented to skip the next sequential
instruction. If ACO contains a 1, the next in-
struction is executed.

CLA 7600 Clear Accumulator. Each bit of the AC is
loaded with a binary 0.

--

Skip microinstructions may be microprogrammed with CLA, OSR or
HLT microinstructions, and also with other skip microinstructions that
have the same value in bit 8. Skip microinstructions which have a 0 in
bit 8 may not be microprogrammed with skip microinstructions which
have a 1 in bit 8, however.

When two or 'more skip microinstructions are microprogrammed into
a single instruction, the resulting condition on which the decision will
be based is the logical OR of the individual conditions when bit 8 is 0,
or the logical AND of the individual conditions when bit 8 is 1 (see
Figure 3-7).

.Table 3-7 lists every legal combination of skip microinstructions, along
with the resulting condition upon which the decision to skip o r execute
the next sequential instruction is based. This table does not include
microprogrammed combinations of skip microinstructions and the CLA,
OSR or HLT microinstructions.

Table 3-7 Microprogrammed Combinations of Group 2
Microinstructions

MNEMONIC OCTAL OPERATION

SZA

SNA

SMA

SPA

SMA

SPA

SMA

SPA

SNL

SZL

SNL

SZL

SZA

SNA

SZA

SNA

7460

7470

7520

7530

7540

7550

SNL 7560

SZL 7570

Skip if AC = 0 or L = 1 or both.

Skip if AC = 0 and L = 0.

Skip if AC < 0 or L = 1 or both.

Skip if AC 2 0 and L = 0.

Skip if AC < 0.

Skip if AC > 0.

Skip if AC < 0 or L = 1 or both.

Skip if AC > 0 and L = 0.

GROUP 3 MICROINSTRUCTIONS
Group 3 microinstructions are used to transfer data between the AC
and multiplier quotient (MQ) registers. Although these microinstructions
are intended primarily for use with the KE8-E Extended Arithmetic Ele-
ment, they are also useful when the MQ is employed as a temporary
storage register, even if an EAE is not installed.
Figure 3-8 shows the format of a group 3 microinstruction. The op-
eration code must be 7, to indicate an operate instruction, while bits 3
and 11 must both contain a 1, to indicate a group 3 microinstruction.
Any one of bits 4, 5 or 7 may be set to indicate a specific group 3
microinstruction. If more than one of these bits is set, the instruction
is a microprogrammed combination of group 3 microinstructions.

LOGICAL SEQUENCE: 1 - CLA
2 - MQA , MQL
3 - ALL OTHERS

1 1 1
1 I

Figure 3-8. Group 3 Operate Microinstructions

Table 3-8 lists the three group 3 microinstructions, their assigned
mnemonics, and the operations they perform. This table also lists two
useful microprogrammed combinations of group 3 microinstructions.

1

Table 3-8 Group 3 Microinstructions

MNEMONIC OCTAL OPERATION

CLA

CLA 7601 Clear Accumulator. Each bit of the AC is
loaded with a binary 0.

MQL 7421 Multiplier Quotient Load. The content of the
AC is loaded into the MQ. The AC is cleared,
and the original content of the MQ is lost.

MOA

MQA 7501 ~ b l t i ~ l i e r Quotient into Accumulator. The con-
tent of the MQ is combined with the content
of the AC by a bitwise logical OR operation,
and the result is loaded into the AC. The orig-
inal content of the AC is lost, but the original
content of the MQ is not affected. Note that
this instruction provides the programmer with
a direct inclusive OR operation.

MQL 1

Table 3-8 Group 3 Microinstructions (Cont.)

MNEMONIC OCTAL OPERATION

SWP 7521 Swap Accumulator and Multiplier Quotient.
The content of the AC and the content of the
MQ are exchanged. This is a microprogrammed
combination of MQA and MQL.

CAM 7621 Clear Accumulator and Multiplier Quotient.
Each bit of both the AC and the MQ loaded
with a binary 0. This is a microprogrammed
combination of CLA and MQL.

INSTRUCTION EXECUTION AND TIMING
The major state generator provides control signals that may enable one
of three major states during each memory cycle.

The FETCH major state is used to fetch an instruction from memory.
FETCH is enabled whenever execution of an instruction was completed
at the end of the last memory cycle. During a FETCH cycle, the proces-
sor reads an instruction from the memory location whose address is
contained in the PC and decodes the first 3 bits of the instruction. If
the instruction is an augmented instruction (OP-code 6 or 7) it is ex-
ecuted during the FETCH cycle. If the instruction is a JMP or memory
reference instruction it is decoded further. Directly addressed JMP in-
structions will also be executed during the FETCH cycle; however, in-
directly addressed JMP instructions and all MRIs require at least one
additional cycle.

If an indirectly addressed JMP or MRI instruction was read from mem-
ory during the last FETCH cycle, the DEFER major state will be enabled
during the following cycle. If a directly addressed MRI was read, the
EXECUTE major state will be enabled next.

The DEFER major state is used to decode indirect memory references.
During a DEFER cycle, the processor computes the 12-bit address of
the memory location specified by bits 4-11 of the indirectly addressed
JMP or MRI instruction and reads the address of an operand from this
location. If the referenced location is an autoindex register, its content
is incremented by 1 during the DEFER cycle, and the incremented value
is taken as the operand address. Execution of an indirectly addressed -

JMP instruction will be completed during the DEFER cycle, but if the
instruction is. an indirectly addressed MRI, the EXECUTE major state
must be enabled to complete execution during the following cycle.

Memory reference instruction execution is always completed during an
EXECUTE cycle. The EXECUTE major state is entered from FETCH, when
a directly addressed MRI is read from memory, or from DEFER, when the
current instruction is an indirectly addressed MRI. In either case, in-
struction execution will be completed by the end of the EXECUTE cycle,
and the FETCH major state will be enabled during the following cycle.

- O N E MEMORY CYCLE-+ ONE MEMORY CYCLE-+ONE MEMORY CYCLE -4
(1 . 2 ~ ~) (l .Zps/ l .4 jbs) (1 . 4 ~ ~) 1

M R I DIRECT/ INDIRECT
I

I* I
J M P INDIRECT I

+
JMP DIRECT

I
* I

I
L Â I -

M R I INDIRECT 1
FETCH DEFER * EXECUTE - 1

1

* I
I

I O T R OPERATE M R I DIRECT I

START UP AND
MANUAL

MEMORY

DATA BREAK - 1

Figure 3-9. Major State Flow Diagram

A fourth major state, Direct Memory Access or DMA, is defined when
neither FETCH, DEFER nor EXECUTE is enabled. The DMA state is en-
tered during data break transfers and during manual operation of the
switches on the programmer's console. Figure 3-9 is a diagram that
illustrates major state flow as a function of instruction type. This dia-
gram indicates which major states will be entered during execution of
any given type of instruction.

Memory Timing
The timing generator produces four time state signals, designated TS1
through TS4, and four time pulse signals, designated TP1 through TP4.
The timing diagram of Figure 3-10 illustrates the relationship between
the time state and time pulse signals for a fast (1.2 microseconds)
memory cycle. A slow (1.4 microseconds) memory cycle is produced
when the EXECUTE major state is enabled or when the DEFER major
state is enabled and the current instruction is an indirectly addressed
MRI with autoindexing. Slow cycle timing is identical to fast cycle timing
except that TS2 is extended for an additional 0.2 microseconds. All
time state and time pulse signals are gated out onto the OMNIBUS
where they are used as control signals throughout the system.

Figure 3-10. PDP-8/E Memory Timing Diagram
(Fast Cycle)

FETCH Major State
Figure 3-11 is a simplified flow chart showing the general sequence of
operations that occurs during every FETCH cycle. Notice that FETCH
is always a fast cycle, and that the major state to be enabled during
the next cycle depends on the type of instruction that is read from
memory during the FETCH cycle.

SET PC=CPMA+ 1 u
------ READ LOCATION

SPeCIFlEO -----

1
EXECUTE '
OPERATE

INSTRUCTION INSTRUCTION (INDIRECT ADDRESS)

I
TS3 1 -

1 (DIRECT ADDRESS1

r . EXECUTE
JMP

INSTRUCTION

UPDATE CPMA G='

(DIRECT
ADDRESS)

DEFER CYCLE

Figure 3-11. FETCH Major State

DEFER Major State
Figure 3-12 is a simplified flow chart showing the sequence of opera-
tions that occurs during a DEFER cycle. DEFER is enabled whenever the
current instruction is an indirectly addressed JMP or memory reference
instruction. It will be a slow cycle if the current instruction references
one of the autoindex registers (locations 0010 to 0017) or a fast cycle
in any other case. DEFER is always entered from the FETCH major
state. A DEFER cycle will be followed by a FETCH cycle, if the current
instruction is an indirect JMP, or by an EXECUTE cycle, if the current
instruction is an indirectly addressed MRI.

EXECUTE Major State a

Figure 3-1 is a simplified flow chart showing the sequence of opera-
tions that occurs during an EXECUTE cycle. EXECUTE is entered from
FETCH, if the current instruction is a directly addressed MRL or from
DEFER, if the instruction is an indirectly addressed MRI. An EXECUTE
cycle is always followed by a new FETCH cycle.

- - - - -
FROM MEMORY

1R=5
(JMP)

SET PC =

RESTORE

TO MEMORY

)&' (&) FETCH CYCLE

cTk--
EXECUTE CYCLE

Figure 3-12. DEFER Major State

3-21

FROM FETCH (7 1

FETCH CYCLE c 9

3 0 I 2 4

(ISZI (AND) (TAD) (DCAI (JMS)

Figure 3-13. EXECUTE Major State

INCREMENT
OPERAND

SET MBaAC SET MB=PC

I 1

